数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现

日期: 栏目:文章分享 浏览:909 评论:0
工具,挖掘,数据分析基础内容介绍,模型,统计

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第1张图片-Ceacer网络

1. 数据分析多层模型介绍

这个金字塔图像是数据分析的多层模型,从下往上一共有六层:数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第2张图片-Ceacer网络

底下第一层称为Data Sources 元数据层。

比如说在生产线上,在生产的数据库里面,各种各样的数据,可能是银行的业务数据,也可能是电信运营商在交换机里面采集下来的数据等等,然后这些生产的数据通过ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,通过这个过程,我们可以把需要的数据放到数据仓库里面,那这个数据仓库就是多层模型中的第二层。

数据仓库主要是给我们需要存放的数据提供一个物理基础,我们对数据进行分析,原材料都放在这个数据仓库里面,这几年以来,除了数据仓库这个概念,还兴起了数据集市这个概念,数据集市其实就是部门级的数据仓库,规模比较小一点的数据仓库。

再上面一层是Data Exploration,这层主要做统计分析的事情,比如我们算均值、标准差、方差、排序、求最小\大值、中位数、众数等等,这些统计学比较常用的指标,另外还有些SQL查询语句,总的来说主要是做一些目标比较明确,计算方法比较清楚的事情。

第四层是Data Mining数据挖掘层,数据挖掘与数据分析(统计分析)有什么区别呢,数据分析往往是统计量和算法比较清楚,数据挖掘往往是目标不是很清楚,在实现目标的过程中采用什么方法不能确定,所以数据挖掘比数据分析难度要高很多。

第五层是数据展现层,把数据分析和数据挖掘得出来的结果通过数据展现层的图表、报表把他展现出来,也可以称为数据可视化。

最后把这些图表、报表交给决策者,以这个为基础做一些决策。

2. 数据分析工具简介

常用的数据分析工具,包括一些厂商的数据库产品,包括IBM的DB2、甲骨文的Oracle数据库。这些厂商的数据库本身带有一些统计分析的包,里面有些标准的功能可以做数据分析工作,但用这些自带的数据分析工具功能相对不够专业。主要反映在缺乏标准的统计函数,比如做一个线性回归模型,需要写一大堆SQL语句,甚至要写一个plsql程序才能完成。但是在专业的统计软件只需要写一个简单的函数就可以完成。

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第3张图片-Ceacer网络

目前最主流的统计软件有R、SAS、SPSS,R是一个免费的开源软件。

SAS大概是历史最悠久的统计软件,是一个商业软件,在60年代就诞生,在70年代以后逐渐商业化,发展到现在SAS已经成为国际标准。

SPSS也是一个历史悠久的统计软件,SPSS一开始是一个仿真软件,后来演变成一个统计软件,目前已经发展成为一个数据挖掘软件,目前被IBM收购,变成IBM旗下的一个产品,在社会学研究院领域有很多的应用。

其他的还有一些软件,比如说水晶报表(Crystal Reports),在做BI和报表非常擅长,另外如UCINET也是在社会学比较常用的软件,它可以画群体的网络图,社交关系图非常擅长。

3. 常用统计方法

使用统计方法,有目的地对收集到的数据进行分析处理,并且解读分析结果:

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第4张图片-Ceacer网络

常用算法

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第5张图片-Ceacer网络

4. 数据挖掘

数据挖掘是以查找隐藏在数据中的信息为目标的技术,是应用算法从大型数据库中提取知识的过程,这些算法确定信息项之间的隐性关联,并且向用户显示这些关联。

数据挖掘思想来源:假设检验,模式识别,人工智能,机器学习

常见数据挖掘任务:关联分析,聚类分析,孤立点分析等等

例:啤酒与尿布的故事

5. 展现层:报表与图形

展现层在数据分析中是一个很重要的组成部分,在大家的心目中数据分析软件只是读数据和算数据,结果算出来就OK了。但其实结果算出来以后对于数据分析还远没有结束,还需要把结果展现出来,有些时候可能结果的展现比计算花的时间还要多。

下图是一个比较老土的报表。

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第6张图片-Ceacer网络

如果那这种报表给老板看,那体验效果肯定很差,其实人的特点对数字的感觉不敏感,如果你那一大堆数字组成的报表给老板看,老板肯定不是很高兴。

人对图形会比较敏感,所以在统计学里面通常有比较标准的图,如饼图、柱形图(垂直和水平)、虚线图、水泡图、鱼骨图、箱线图等等。

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第7张图片-Ceacer网络

下面是一张在地图上展现数据的展现形式

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第8张图片-Ceacer网络

下图是关于使用安卓手机的数据展现

数据分析基础内容介绍 — 模型、工具、统计、挖掘与展现-第9张图片-Ceacer网络

根据信息图显示,Android先生的头发有47%的可能是黑色的,戴眼镜的几率为37%,有36%的可能是北美人,30%的可能脸上长雀斑。71%的时 间会穿T恤,下身穿牛仔裤的时间占了62%。工作只占了38%,玩游戏却占了62%,平均每个月会用掉582MB的数据流量。这种图称为信息图,在数据分析这个行业里面,是数据展现工作的主要组成部分。

 

更多阅读:

  • 谷歌官方公布:票房预测模型
  • 网站分析:未来是移动的天下?
  • 淘宝启动商家数据应用大赛 获胜者可获独家数据支持
  • 2015年加拿大联邦大选 大数据挖掘大行其道
  • 2010美国云计算统计
  • Facebook广告业务7大问题:尚未挖掘数据金矿
  • 想从事数据行业?你必须掌握这个最核心的技能
  • 统计:从计数到大数据
  • Google推工具News Lab 抢占媒体市场
  • 你应该知道的18个大数据工具
  • 大数据工具,在数据科学家眼中是怎样的存在?
  • 可为小业主服务的33个免费社交媒体工具
  • 谷歌推出人工智能工具筛查恶意言论
  • 2015 Bossie评选:最佳开源大数据工具
  • 104市調中心:App熱潮不退 消費者最愛哪些App?

2021-06-01 17:06:36

标签: